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Since our conceptual structures are a major factor in learning, it may be hypothesised that 
the richer these schemas are the better the learning that will result. This paper reports on a 
study of students’ understanding of derivative, and the thinking they construct. It follows the 
progress of two students, James and Bob, and describes a snapshot of the richness of their 
thinking in this area. This is related to a framework of knowing proposed by the authors, 
and examples of the possible value of schematic extensibility in terms of understanding new 
ideas  

The notion of schemas has gained considerable support in the literature as a metaphor 
for the manner in which cognitive structures are formed and mature (Skemp, 1979; 
Anderson, 1995). Such schemas are formed as students’ experiences in a conceptual area 
expand, and actions, processes, and objects are linked into coherent structures (Dubinsky & 
McDonald, 2001). It seems to be reasonably evident that an individual’s existing 
conceptual structures, or schemas, are a key determinant of ability to understand and hence 
make progress in learning, either by promoting or restricting the association of new 
concepts. The richer the schemas, in terms of the spread of the network, the qualitative 
nature and the strength of the links between the constituent parts, the more likely they are 
to support such expansion. However, capturing how schemas change in any knowledge 
domain is very difficult. The study reported here attempts to describe the qualitative nature 
of the growth of two students’ schematic structures surrounding the concept of derivative. 

One key factor built into schemas for a given concept is the representational basis of 
the concept. Representation cannot be divorced from the process of mathematical 
understanding since the ability to represent is implicit in learning mathematics. It is not 
possible to think consciously about mathematics without using some form of 
representation. For example, symbols (including words) are used to represent mathematical 
objects, processes or structures (i.e. mathematical concepts), diagrams are constructed to 
make sense of relationships involved in information given in mathematical problems, and 
graphs are drawn to provide visual support to properties and behaviour of functions.  

Research has shown that there is a constitutive relationship between students’ 
representational abilities and their mathematical understanding and problem solving 
proficiency (Cifarelli, 1998; Lesh, 2000). For example, learners’ emerging understanding 
can be attributed to their capability to represent a problem in a number of different ways, 
allowing them to approach solutions from different perspectives (Sigel, 1999). Studies in 
algebra and calculus (e.g., Orton, 1983; Heid, 1988) have shown significant improvement 
in students’ performance when taught in multiple representational environments. Based on 
a study examining understanding of differentiation, Heid’s (1988) investigation also 
showed that the performance of calculus students who were exposed to meanings and 
concepts first, using a variety of representations, followed by an emphasis on skills, 
performed better compared with students taught in the reverse sequence. Slavit (1996, p. 
14) noticed how for 16 year old algebra students the “multi-representational capabilities of 
the [graphic calculator] allowed additional aspects of a problem to be quickly analysed in a 
‘representationally-connected’ fashion.” Such studies suggest that conceptual development 
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of students could be enhanced through teaching and learning with multiple representational 
perspectives. A suggested reason for this is that a multi-representational approach may 
divert the focus of attention from the representation, through the abstraction and 
identification of links between representations, to the concept that it represents (Noble, 
Nemirovsky, Wright, & Tierney, 2001). Thus, the formation of integrated multiple 
representations for the same phenomenon might encourage meaningful understanding, 
enhancing representational fluency (Lesh, 2000). It has to be recognised though that student 
use of multiple representations may not be automatic. For example, Crowley (2000) noted 
that graphical and symbolic representations were not linked by students unless they were 
explicitly asked to do so, and Weigand and Weller (2001) found that students often lacked 
the patience to read, interpret and reflect on different representations. Further, Kendal and 
Stacey (2002) found that only the most capable students achieved the goal of developing 
facility with numerical, graphical and symbolic representations of functions and 
derivatives. 

In this paper, we characterise a snapshot of two students’ mathematical knowing vis-à-
vis their representational abilities. This characterisation is based on the previously 
described Representational Framework of Knowing Derivative (delos Santos & Thomas, 
2003, p.326). Presented in matrix form, this framework maps students’ dimensions of 
knowing across their representational preferences, with each cell describing possible 
representational abilities, as they engage in solving problems. The dimensions of knowing 
are categorised into procedure-oriented, process-oriented, object-oriented, concept-
oriented, and versatile, characterised according to different modes of representations 
(symbolic, graphical, and numeric). Due to space limitations we present here only 
descriptions for the last two dimensions of knowing. 

• Concept-oriented knowing – the level where the learner has created a ‘bigger picture,’ comprising 
schemas containing procedures, processes, and objects arranged in a relational manner. The learner with 
concept-oriented knowing can provide answers to why certain procedures and processes work, is able to 
create conceptual links across representations and relate process and object tools used in problem 
solving. 

• Versatile knowing – the learner has sufficiently wide range of the four types of knowing to enable choice 
in problem solving, along with sufficiently developed metacognitive ability to choose an appropriate 
perspective at any given point in time, and the ability to move fluently between the chosen perspectives 
as required.  

Method 

This research comprised case studies of James and Bob (pseudonyms), two male Form 
7 students (aged 18 years) from a high-level socio-economic private school in Auckland, 
New Zealand. The analysis of the two students’ thinking and understanding forms part of a 
study of the understanding of derivative which took place in four schools where the 
teachers agreed to ‘integrate’ graphic calculators in their teaching of calculus. From the 
student volunteers three or four students from each school were selected as representative 
of high-, mid-, and low-achievers, using a pre-test. The two high-achieving students 
described here were interviewed before and after the intervention, which comprised a 
module of work on derivative using TI-83 calculators. After the module, a post-test was 
given followed by the post-intervention interview. The pre-intervention interviews were 
video-taped, while the post interviews were audio-taped, and both were transcribed and the 
data analysed, together with the test results. In addition, there is analysis of concept maps 
prepared by the students (considered to be an externalisation of conceptual schemas) and 
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interview data, including interpretation of familiar and unfamiliar symbolisations related to 
derivative. The two students were taught by a teacher very experienced at ‘integrating’ 
graphic calculators into her teaching. She has a strong belief that an emphasis on multiple 
representation, supported by the use of the graphic calculator in teaching and learning 
provides better opportunities for conceptual learning.  

Results and Discussion 

On the pre-test James obtained 51% and Bob 58% (class average: 34.8%), while in the 
post-test, Bob got 77% and James scored 76% (class average: 51.2%), placing them among 
the top three participating students in their calculus class. In view of this we expected them 
to exhibit evidence of relatively rich schemas for derivative. What we found from the 
interviews is described below. 

The Concept of Derivative 

There was some evidence from the students that their conceptual structure for 
derivative was changing, even during the eight weeks of the study. This was inferred from 
the differences in the first and second interviews and the concept maps. In the first 
interview Bob was unclear on the connection of the derivative to gradient: 

B. I don't actually know, we haven't been taught why it is that, but it comes back to if you've got y, or 
you've got a function, perhaps a function of f, in terms of x, and perhaps it's used x2 for reasons I 
don't actually know, but the gradient comes from, and comes from being 2x and that comes from… 

And immediately after this comment he resorted to a procedural explanation of how to 
find the derivative: 

B. So what you are basically doing is you take the power, and then you multiply, you take turn from 
[sic] the coefficient the number that the x gets multiplied, then you subtract 1 from the index of the 
power. …It’s the equation or function you work out when you want to find the gradient, the original 

function. So the trick that I remember was…if you got the function of x is axb, then the derivative 

of that is baxb−1…that’s sort of what I remembered about derivatives. 

At this point, during the first interview, James also described derivative in a manner 
betraying a procedural tendency, and a lack of rich conceptual understanding: 

J. Derivative of a function, you get…after you differentiated?...and you differentiate by first 
principles and you can proceed by rule…and magically we know that that way…when you derive 
something, you will get the gradient but I can’t remember the…there is a pretty good reason…there 
is a reason behind everything. 

In their responses both seemed to view derivative as a function obtained by 
differentiation, and subsequently both showed reasonable differentiation skills. However, 
they did not elaborate regarding different representational modes. They may have had some 
mastery of differentiation procedures and an object-oriented view of derivative, but their 
conceptual understanding had not yet matured. For example, though James knew some 
elementary rules of differentiation, and knew that derivatives can be obtained by first 
principles, he was limited to a description of surface features of the first principles 
expression, and could not correctly recall it, saying that “it’s all over x” and that the limit 
was “x approaching zero.” 

In contrast, when James and Bob were asked, in the second interview, to explain their 
understanding of derivative, they gave the following responses: 
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J: Well, derivative is sort of like …it is the graph of the gradient of this other graph…I think it’s 
more a fact that it’s the gradient at a given point on the graph. That makes more sense when I think 
about it. So, yeah, but the graph gets you just all of these with the corresponding x-y...makes it a lot 
easier to read. …derivative of a function you get…after you differentiated. You differentiate by first 
principles, and you proceed by rules. 

B: The first derivative…is that how much of the gradient of that tangent to that point is. So, if you 
draw a straight line through that point with the gradient equal to it [the derivative], that will be the 
gradient of that line…By doing the proper process…you take the limit of the gradient…[starts 
describing the formulation of first principles]…that’s how we worked out the gradient at that very 
particular point. Then we were taught to cheat, which was to play with powers [and demonstrated 
the rule for the derivative of xn—italics added] 

Both students relate derivative to graphs, particularly to the gradient of a tangent ‘at a 
given point on the graph’ and ‘to that point’. Such a pointwise approach has been 
characterised by Thomas (2005) as a process perspective. In turn, their description of 
derivative has both a graphical basis and an appropriate algebraic component. They both 
presented a derivation of the gradient (derivative) from first principles, and offered another 
method to obtain the derivative rules (cheat, as Bob describes it). While low-achieving 
students may describe derivative in a primarily procedural manner, using only a symbolic 
representation (delos Santos & Thomas, 2003), these two students have demonstrated a 
more complex description, employing several representational perspectives and they 
appeared to be using these as cognitive tools. They constituted the definition of derivative 
within both the graphic and the symbolic modes, and described derivative as an object (the 
gradient of a point) that could be seen and thought of graphically, and as a process, through 
its first principles derivation using symbols and its application to particular points. These 
were underpinned by relevant links between the process and its graphical representation. 
Moreover, in both interviews, they appropriated another crucial interpretation of derivative, 
namely as a rate of change and/or a function in itself.  

J1: They’re all functions in their own respect…It’s…rate of change. J2: …this is the rate of change 
with respect to y, which is the same as the gradient. 

B1: …involves how much things change over a period of time…there’s a rate of change. B2:  …this 
one is the rate of change, and it's also the derivative. 

What is evident in their responses is not just their facility in describing derivative using 
symbols and graphs, but also the links they have built to attribute meaning for derivative. It 
seems that the graphical representation has served as a cognitive tool in building a link 
between representations, and hence a multi-representational perspective of derivative.   

Changes in Concept Maps 

The changes in James’ and Bob’s conceptual understanding of derivative and 
differentiation between the two interviews described above is supported by their respective 
concept maps of derivative and differentiation (see Figures 1 and 2). In his first concept 
map, James’ presentation of ideas was linear, tabular, compartmentalised and hierarchical, 
with function on top, differentiation executed downward and anti-differentiation returning 
to the function. 

The second concept map was transformed into a circular form, with function in the 
centre and other ideas emanating from it. He was, however, quick to note that the 
derivatives are also functions, seemingly emphasising that the centre refers to a specific 
function, and that the circular map is embedded in family of functions. Bob’s first concept 
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map was more of a collection of propositions, which was transformed into a more complex 
map with web-like links centring on the idea of derivative. Their second concept maps still 
contain symbols, and graphically-based ideas such as gradient, turning point and concavity, 
but are richer in terms of links to concepts such as rate of change, and integration. These 
qualitative differences in their concept maps appear to indicate both growth and 
transformation of their continuous conception of derivative. A limitation of these maps is 
the failure to have the links labelled. Thus it is not possible to differentiate qualitatively 
between, say, a link from derivative to rate of change that was thought of as “is a” (object 
link) and one that was “is used to find” (procedural link). 

 

 

 

 

 

 

 

Figure 1. Bob’s first and second interview derivative concept maps. 

 
 
 

 

 
 
 
 
 
 
 

 

Figure 2. James’ first and second interview derivative concept maps. 

Using the Rich Derivative Schemas 

One of the expected benefits of a rich schema in any part of mathematics is that it is 
more readily extensible. When new ideas, possibly represented by unfamiliar symbols or 
contexts, are encountered they are more easily assimilated. One of the methods we used in 
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this research was to present the students with familiar symbols for derivative in either less 
familiar or unfamiliar contexts to see their reaction. Examples of these symbolisations were 
d dy

dx( )
dx

,  f ( ′ f (x)), and  ′ f ( ′ f (x)). For the first symbol, during the second interview Bob 

said “that is the second derivative and that is how much the gradient of the function is 
changing “ and James called it “the second derivative of the function y”.  They were both 
immediately able to allow the process to operate on the derived function, and to link it to 
d2y

dx2
. When James initially tried to interpret the meaning of f ( ′ f (x))  he displayed the 

ability to think of the symbol ′ f (x) as an object, which he described as the derivative 
function. He read the symbol as “the first function of the derivative function.” In his 
attempt to describe what the symbol meant, he used a specific family of functions of the 
form f (x) = xn . His work, where he used f (x) = x2, obtained f ( ′ f (x)) = (2x)2, and 
worked from there, is shown in Figure 3. 

 

 

 

 

Figure 3. James’ working on f ( ′ f (x)) , by-hand and on the GC. 

He then picked up the graphic calculator to graph the resulting functions saying that 
“It’s going away…it’s always gonna be steeper than this original function…it’s gonna be 
steeper…it’s also gonna be concave upward.” After some time, while comparing the 

algebraic results with the graphs, he generalised the result to xnxn2−n , recognising n2–n as 
always even. Bob, however, immediately formalised the notation, describing f ( ′ f (x))  as a 
composite function, and worked on it as such: “that’s the tangent value of the similar 
function on the gradient…it is the result you get from…the function f of the gradient of the 
derivative of that function.” Though the response sounds vague, he demonstrated how to 
obtain the result using a specific function, f (x) = x2, “if we take ′ f (x) = 2x , you’ll end 
up…to 4x2.” When asked what the significance of the symbol is, he replied “to generate a 
new function. That’s what I see from it.” Though both James and Bob saw the symbols as a 
composite function, Bob is more locked into a process view, whereas James went further 
and was able to generalise the outcome from the process, symbolising it and describing the 
result as the generation of a new function. Again, what appears to be interesting here is the 
way their attempts to make sense of the symbols employed several interconnected 
representations. They were able to relate the symbols to words describing concepts, and to 
others that were graphical in nature, namely tangent and gradient. James in particular was 
able to use the graphic calculator to reason from a graphical perspective. 
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When asked to describe ′ f ( ′ f (x))  James said “that does imply second derivative”. 
Hence instead of applying the composite function thinking he had used only seconds 
previously he saw this as the second derivative     ′ ′ f (x) . This could be the result of a strictly 
linguistic interpretation of the symbolism. Reading ′ f (x)  as f-dashed of x, may cause one 
to read ′ f ( ′ f (x))  as f-dashed of f-dashed of x. This in turn leads to James statement that 
“It’s the derived function of the first derived function.”, and hence the second derivative. 
When asked about ′ f ( ′ f (x))  Bob responded “That is yet another one... you'll be working 
out the gradient of the value, which is equal to the gradient when you've got a number 
which is x...in a circle, which I don't actually think it means…you can definitely evaluate it 
the number I don't think it means much.” Clearly he was confused, and not able to apply 
his understanding of composite function to this symbolism. 

Approaching Versatility 

Both these students have moved from a mainly procedural perspective to a more 
concept-oriented view of derivative. They have increased the number of links in their 
derivative schema, particularly with respect to increased representations. However, while 
they have relatively rich schemas of derivative that can be described as concept-oriented-
knowing in our framework, they are not yet versatile in their conceptions. One reason may 
be that a possible contributory factor in the ability of both students to develop a conceptual 
understanding of derivative, namely their preference for thinking graphically, may be 
holding them back. A feature of versatile knowing is the ability to control perspectives and 
to move seamlessly between representations as and when required in mathematical 
thinking and problem solving. When asked for the use of derivative, for example, Bob 
pointed out the problem of “looking for the point of a minimum of something, by finding 
the minimum of a curve that models the situation, and evaluating the minimum needed.” 
With reference to the curve, he described that it could be done by “solving for the 
derivative equal to zero,” and started to describe how “that’s the turning point.” He further 
explained how “that [the turning point] tells you whether it’s a maximum or a 
minimum…by checking the derivative on either side to see if the sign [of the derivative] 
changes from negative to positive.” Such comments show a procedural orientation but also 
demonstrate how the decision-making part of the problem is linked to a graphical 
interpretation of results. 

James, in describing turning points, explained in terms of mathematical ideas, not just 
procedures, that “you have to investigate because sign is zero. So, investigate the sign of 

′ f (x)…if the sign is positive here, because the sign is increasing and [referring to the other 
side of the turning point] decreasing, getting more and more…cause it is zero here, it gives 
us a turning point…it implies a positive on this side.” However, his view is still graphically 
oriented. This was also true when he was queried about real-life applications of derivative, 
he replied “… sort of gotta think of graphical.”, and at another point in the interview, he 
commented that “I think algebraically, using graphs and stuff…and answers algebraically 
using the graph really comes in very handy.”  

It is not possible to ascribe the positive changes in thinking of Bob and James in this 
snapshot to any particular item or activity. Clearly the growth of schemas is organic and 
affected by many variables. However, both James and Bob had used the GC in a number of 
ways. Bob said he used it to check answers, and he wrote little programs, including one for 
a parabola. He felt that it helped him to “get a better picture of it sometimes through the 
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graph…See what's actually happened, why it happened and how it happened.” When asked 
if the use of the GC by the teacher helped him understand better Bob replied “In terms of 
understanding I think it has helped…it allows us to see what the answer is.” However, he 
had some reservations on the GC use, noting that “it would possibly make me lazy with 
working pressing buttons, getting the calculator to do it so forget the working out”. It may 
be that the use of the GC was a factor in their progress, and if so this is likely due to teacher 
privileging (Kendal & Stacey, 1999) of GC use by their experienced teacher, and the multi-
representational approach she adopted with the GC. However, results on this are 
inconclusive and further exploration of any link is required. 
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